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A BI-OBJECTIVE MATHEMATICAL MODEL FOR INVENTORY-

DISTRIBUTION-ROUTING PROBLEM UNDER RISK POOLING 

EFFECT: ROBUST META-HEURISTICS APPROACH 

 

Abstract. In this paper, a bi-objective model is proposed to study Location-

Routing-Inventory (LRI) problem considering risk pooling and soft time window. The 
first objective function aims to minimize the costs of establishing Distribution Centers 

(DCs), transportation, ordering, and inventory holding; the second one minimizes the 

earliness and lateness of vehicles. Considering the large-scale instances of this 

problem is NP-Hard, three meta-heuristic algorithms, such as NSGA-II, MOPSO, and 
Pareto Envelope-based Selection Algorithm (PESA)-II, are proposed. These 

algorithms are compared, and NSGA-II outperforms the other algorithms. Afterward, 

the proposed NSGA-II is compared with the exact method. The computational results 
show that the exact method only outperforms this algorithm with around 6% gap in the 

first objective function on average. Eventually, a sensitivity analysis has been 

conducted with respect to the number of DCs and vehicles. This shows that total costs, 
and total earliness and lateness increase and decrease in both cases, respectively. 

Keywords: Risk Pooling; Vehicle Routing Problem; Location-Routing-Inventory 

Problem; NSGA II. 
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1. Introduction 

In recent decades, competition, efficiency and effectiveness have been drawn the 

attention of practitioners due to globalization, increment in the diversity of goods and 

complexity of organizations.  

Supply risk can affect differently the inventory management policies. SC risk 

management has been widely investigated since the concept of uncertainty was 

introduced into inventory theory. Uncertainty in SCs could be defined as both demand 

and supply uncertainties (Schmitt et al., 2015). 

To solve uncertainty demand problem that leads to lost sales and holding SS, 
inventory aggregation or risk pooling is suggested which can decrease SS. Gaur and 

Ravindran (2006) stated that risk pooling is an efficient approach to decrease the SS, 

and consequently, to decrease inventory over the supply chain. Furthermore, they 
indicated that risk polling is an efficient approach when holding SS creates a large 

portion of supply chain costs. 

 The optimal allocation of vehicles for distribution decreases the transportation 

costs, and earliness and lateness. In such cases, increasing the lateness in delivering 
products could even force customers to choose one another products in the market. In 

numerous industries, such as food, pharmaceutical, and meat industries, holding goods 

more than sufficient will increase the holding costs. Finally, increasing earliness and 

lateness of products in such industries will also increase the dissatisfaction of 
customers, significantly. Thus, both of Risk pooling problem and Vehicle Routing 

Problem with Time Window (VRPTW) are studied, simultaneously. 

 The rest of this paper is organized as follows. The problem is explained in 

Section 3. The mathematical formulation is presented in Section 4. The mentioned 
meta-heuristic algorithms are proposed in Section 5. Section 6 presents computational 

results, and Section 7 provides a conclusion. 

2. Literature Review 

Gaur and Ravindran (2006) studied the effect of risk pooling on the supply chain. They 

stated that SS would decrease by risk pooling that depends on the correlation of 
retailers’ and customers’ demand. Ahmadi-Javid and Azad (2010) proposed a 

mathematical model to study LRI problem. They considered that demand of customers 

is uncertain and follows the normal distribution. They also assumed that each of 

retailers could hold SS. Ahmadi-Javid and Seddighi (2012) investigated the problem of 
LRI. They considered multiple cooperating suppliers in a three-echelon distribution 
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network. To solve large-scale instances, they proposed a meta-heuristic consisting of 

simulated annealing and ant colony algorithms. 

Vahdani et al. (2017) proposed an integrated model to study the problem of 

Production-Inventory-Routing (PIR). They considered the limited capacity of vehicles 

and time window constraints for perishable products. Dehghani and Jabalameli (2017) 

investigated LRI problem under uncertainty. To deal with uncertainty, they used 
parameters of continuous Markov process. They tried to minimize the costs of 

location, distribution, and inventory. Nekooghadirli et al. (2014) proposed a bi-

objective mathematical model for the problem of LRI. They considered this problem 
for a multi-period and multi-product system. The first objective function minimizes the 

total, costs and the second one minimizes the average delivery time to costumers. 

Schmitt et al. (2015) compared the centralization and decentralization of 

inventory with each other. They also reviewed different types of possible risks and 

disruptions threatening supply chain. Park et al. (2010) studied a three-echelon the 
supply chain considering inventory risk pooling and delivery time. Kang and Kim 

(2012) studied the problem of inventory control in a supply chain including one 

supplier, one DC, several regional depots, and several costumers. They proposed a 
mathematical model to minimize the total operational, inventory holding, and 

distribution costs. Tavakkoli-Moghaddam et al. (2013) proposed a bi-objective 

mathematical model to investigate LRI problem with risk pooling. The first objective 
function minimizes the total cost of the system, and the second one minimized the 

distribution time of goods.  

Kumar and Tiwari (2013) proposed a mathematical model for the LRI problem 

with risk pooling. They were looking forward to finding the effect of risk pooling on 

the circulating inventory and SS level. Zhang et al. (2016) studied location of facilities 
problem considering the disruptions of facilities. When a facility confronts with 

disruption, customers’ demand will be satisfied by other working facilities to avoid the 

lost sale. 

Based on the literature, researchers published many papers for Vehicle 
Routing Problem (VRP) when customers’ demand are satisfied within a specific 

interval of time (i.e., VRP with time window) (Corne et al., 2001). Considering Zhong 

and Cole (2005) and Low et al. (2013), most of the researchers investigated two types 

of time windows. In hard time window, customers’ demand is only satisfied within the 
predefined interval of time. On the other hand, delivery time can take place even 

before or after this predefined interval of time in the soft time window. However, early 
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or late delivering of customers’ demand happen before or after that predefined interval 

of time faces with a penalty added to the objective function in the soft time window 

(Yan et al., 2015). 

In this paper, the problem of LRI with risk pooling is considered and a bi-

objective mathematical model is proposed. In contrast to previous investigations, the 

main contribution of this paper is threefold: 

- Total earliness and lateness are considered as an objective function. 
- Fleet is considered to be heterogeneous.  

- Three meta-heuristic algorithms have been developed and compared with 

each other. 

3. Problem statement 

To satisfy the demand of customers, two following cases are possible: 

- Satisfy customers’ demand by their specific depots 

- Satisfy customers’ demand by only a specific depot 

In the first case, each depot holds its required SS. This will increase the total 

SS held in the supply chain. In the second case, the demand of customers is aggregated 

in one depot. This helps to decrease the uncertainty existing in demand, and 
consequently, to decrease the SS. Inventory aggregation (also called risk pooling) is an 

efficient approach to decrease the SS and to decrease total inventory throughout the 

supply chain (Gaur and Ravindran, 2006). 

In the case of centralized SS, required SS is determined based on Eppen 

(1979), and Chen and Lin (1989) 

While in the case of  decentralized SS is implemented, required SS is determined 

based on Kumar and Tivari, (2012). 

Mathematical formulation 

 To formulate the problem mentioned above, following assumptions are 

considered: 

- A two-echelon supply chain that includes DCs and customers and the demand 
of customers is uncertain and follows normal distribution function, and is 

independent.  

- Establishing cost of DCs depend on the capacity of them. 
- All DCs have specific fixed costs of ordering and inventory holding. 
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- DC𝑗 follows the inventory policy of (𝑄𝑗, 𝑅𝑗). Furthermore, each of DCs can 

hold SS; furthermore, fixed order quantity 𝑄is purchased when inventory level 

reaches to reorder point 𝑅. 

- Transportation fleet is heterogeneous. 

- Transportation time between nodes is deterministic. 

Considering above-mentioned assumptions, we define the following indices, 

parameters, and decision variables for the mathematical formulation. 

- Indices and sets: 

𝑘 ∈ {1,2, … , 𝐾} Index of customers 𝑘 

𝑗 ∈ {1,2, … , 𝐽} Index of potential DCs 𝑗 

𝑣 ∈ {1,2, … , 𝑉} Index of vehicle 𝑣 

𝑛 ∈ {1,2, … , 𝑁𝑗} Index of DCs’ capacity 𝑛 

Union of customers’ and DCs’ sets (i.e.,𝐾 ∪ 𝐽) 𝑀 

- Parameters: 

Number of all customers (i.e.,𝐵 = |𝐾|) 𝐵 
Average annual demand of customer 𝑘 𝜇𝑘 

Variance of annual demand of customer 𝑘 𝜎𝑘
2 

Total operational cost and establishing cost of DC𝑗 with capacity 𝑛 𝑓𝑗
𝑛  

Capacity with level 𝑛 for DC𝑗 𝑏𝑗
𝑛 

Transportation cost between nodes 𝑘 and 𝑙 𝑑𝑘𝑙 

Annual delivery capacity of vehicle𝑣 𝑣𝑐𝑣 
Number of times that each of customers is visited within a year 𝑞 

Annual cost of inventory holding for DC𝑗 (per each unit product) ℎ𝑗 

Fixed ordering cost for DC𝑗 𝑝𝑗 

Lead time of DC𝑗 in year 𝑙𝑡𝑗  

Fixed cost per shipment from supplier to DC j 𝑔𝑗  

Shipment cost from supplier to DC𝑗 (per each unit product) 𝑎𝑗 

Fixed cost of using vehicle 𝑣 𝑃𝑟𝑣 
Desired percentage of customer orders that should be satisfied 𝛼 
Left a-percentile of standard normal random variable Z 𝑧𝛼 
Weight factor associated with transportation cost 𝛽 
Weight factor associated with inventory cost 𝜃 
Service time of customer 𝑘 𝑠𝑘

𝑣 

Travel time from node 𝑘 to node 𝑙 by vehicle 𝑣 𝑡𝑘𝑙
𝑣  
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Lower bound of time window for customer 𝑘 𝑒𝑘 

Upper bound of time window for customer 𝑘 𝑙𝑘 
An adequately large number 𝐻 

- Decision variables: 

If vehicle 𝑣 travels from node 𝑘 to node 𝑙 1; otherwise, 0. 𝑅𝑘𝑙𝑣 

If Customer 𝑘 is assigned to DC𝑗 1; otherwise, 0. 𝑌𝑗𝑘  

If DC𝑗 is established with capacity 𝑛 1; otherwise,  𝑈𝑗
𝑛 

Earliness of vehicle 𝑣 for customer 𝑘 𝐸𝑘
𝑣 

Lateness of vehicle 𝑣 for customer 𝑘 𝐿𝑘
𝑣  

Arrival time of vehicle 𝑣 to customer 𝑘 𝑚𝑘
𝑣 

An auxiliary variable to eliminate sub-tours 𝑀𝑘𝑣 

The proposed model includes two objective functions; these objective 

functions are formulated as follows: 

𝑀𝑖𝑛 𝑓1 =  ∑ ∑ 𝑓𝑗
𝑛𝑈𝑗

𝑛
𝑛∈𝑁𝑗𝑗∈𝐽 + 𝛽𝑞(∑ ∑ ∑ 𝑑𝑘𝑙𝑅𝑘𝑙𝑣 + ∑ ∑ ∑ 𝑃𝑟𝑣𝑅𝑗𝑙𝑣𝑙∈𝑀𝑗∈𝐽𝑣∈𝑉𝑙∈𝑀𝑘∈𝑀𝑣∈𝑉 ) + 

∑ [(𝜃𝑝𝑗 + 𝛽𝑔𝑗)
∑ 𝜇𝑘𝑌𝑗𝑘𝑘∈𝐾

𝑄𝑗
+ 𝛽𝑎𝑗 ∑ 𝜇𝑘𝑘∈𝐾 𝑌𝑗𝑘 + 𝜃ℎ𝑗𝑧𝛼√𝑙𝑡𝑗 ∑ 𝜎𝑘

2𝑌𝑗𝑘𝑘∈𝐾 ]𝑗∈𝐽   (1) 

The first objective function minimizes the fixed costs of establishing DCs, 
annual costs of transportation and inventory costs. To be more precise, the first and 

second terms minimize the fixed costs of establishing DCs, and annual costs of 

transportation, respectively. The third term also minimizes the inventory costs. 

𝑀𝑖𝑛 𝑓2 = ∑ ∑ (𝐸𝑗
𝑣

𝑗∈𝐽𝑣∈𝑉 + 𝐿𝑗
𝑣)                                                                          (2)

        

 The second objective function also minimizes the earliness and lateness in 

satisfying customers’ demand. 

 The derivative of the first objective function regarding 𝑄𝑗 is equal to 

Eq. (3). we replace 𝑄𝑗 by Eq. (3), in Eq. (4). 

𝑄𝑗
∗ = √

2𝜃ℎ𝑗(𝜃𝑝𝑗+𝛽𝑔𝑗) ∑ 𝜇𝑘𝑌𝑗𝑘
2

𝑘∈𝐾

𝜃ℎ𝑗
       (3) 

𝑀𝑖𝑛 𝑓1 = ∑ ∑ 𝑓𝑗
𝑛𝑈𝑗

𝑛
𝑛∈𝑁𝑗𝑗∈𝐽 + 𝛽𝑞(∑ ∑ ∑ 𝑑𝑘𝑙𝑅𝑘𝑙𝑣 + ∑ ∑ ∑ 𝑃𝑟𝑣𝑅𝑗𝑙𝑣𝑙∈𝑀𝑗∈𝐽𝑣∈𝑉𝑙∈𝑀𝑘∈𝑀𝑣∈𝑉 ) +  
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∑ [√2𝜃ℎ𝑗(𝜃𝑝𝑗 + 𝛽𝑔𝑗) ∑ 𝜇𝑘𝑌𝑗𝑘𝑘∈𝐾 + 𝛽𝑎𝑗 ∑ 𝜇𝑘𝑘∈𝐾 𝑌𝑗𝑘 + 𝜃ℎ𝑗𝑧𝛼√𝑙𝑡𝑗 ∑ 𝜎𝑘
2𝑌𝑗𝑘𝑘∈𝐾 ]𝑗∈𝐽  (4) 

 The continuous relaxation of the first objective function (i.e., Eq. (1)) is 

concave. Therefore, reaching the global optimum solution is not guaranteed using the 

existing methods. Since 𝑌𝑗𝑘  is a binary variable, we will replace  𝑌𝑗𝑘  by 𝑌𝑗𝑘
2  in the first 

objective function to convexity. Eventually, the first objective function is formulated 

as Eq. (5) (Ahmadi-Javid and Azad, 2010). 

𝑀𝑖𝑛 𝑓1 = ∑ ∑ 𝑓𝑗
𝑛𝑈𝑗

𝑛
𝑛∈𝑁𝑗𝑗∈𝐽 + 𝛽𝑞(∑ ∑ ∑ 𝑑𝑘𝑙𝑅𝑘𝑙𝑣 + ∑ ∑ ∑ 𝑃𝑟𝑣𝑅𝑗𝑙𝑣𝑙∈𝑀𝑗∈𝐽𝑣∈𝑉𝑙∈𝑀𝑘∈𝑀𝑣∈𝑉 ) +  

∑ [√2𝜃ℎ𝑗(𝜃𝑝𝑗 + 𝛽𝑔𝑗) ∑ 𝜇𝑘𝑌𝑗𝑘
2

𝑘∈𝐾 + 𝛽𝑎𝑗 ∑ 𝜇𝑘𝑘∈𝐾 𝑌𝑗𝑘
2 + 𝜃ℎ𝑗𝑧𝛼√𝑙𝑡𝑗 ∑ 𝜎𝑘

2𝑌𝑗𝑘
2

𝑘∈𝐾 ]𝑗∈𝐽  (5)

  

These objective functions are subjected to the following constraints: 

𝑚𝑘
𝑣 + 𝑠𝑘

𝑣 + 𝑡𝑘𝑙
𝑣 − 𝑚𝑙

𝑣 ≤ (1 − 𝑅𝑘𝑙𝑣)𝐻  ∀𝑣 ∈ 𝑉 . ∀𝑘. 𝑙 ∈ 𝑀. 𝑘 ≠ 𝑙        (6) 

𝐸𝑘
𝑣 ≥ 𝑒𝑘 ∑ 𝑅𝑘𝑙𝑣𝑙∈𝑀 − 𝑚𝑘

𝑣   ∀𝑘 ∈ 𝑀. 𝑣 ∈ 𝑉           (7) 

𝐿𝑘
𝑣 ≥ 𝑚𝑘

𝑣 − 𝑙𝑘     ∀𝑘 ∈ 𝑀. 𝑣 ∈ 𝑉           (8) 

∑ ∑ 𝑅𝑘𝑙𝑣𝑙∈𝑀𝑣∈𝑉 = 1    ∀𝑘 ∈ 𝐾                        (9) 

∑ 𝜇𝑙 ∑ 𝑅𝑘𝑙𝑣𝑘∈𝑀𝑙∈𝐾 ≤ 𝑣𝑐𝑣   ∀𝑣 ∈ 𝑉                        (10) 

𝑀𝑘𝑣 − 𝑀𝑙𝑣 + (𝐵 × 𝑅𝑘𝑙𝑣) ≤ 𝐵 − 1  ∀𝑘. 𝑙 ∈ 𝐾. ∀𝑣 ∈ 𝑉          (11) 

∑ 𝑅𝑘𝑙𝑣𝑙∈𝑀 − ∑ 𝑅𝑙𝑘𝑣 = 0𝑙∈𝑀    ∀𝑘 ∈ 𝑀. ∀𝑣 ∈ 𝑉          (12) 

∑ ∑ 𝑅𝑗𝑘𝑣𝑘∈𝐾𝑗∈𝐽 ≤ 1    ∀𝑣 ∈ 𝑉                        (13) 

∑ 𝑅𝑘𝑙𝑣 + ∑ 𝑅𝑗𝑙𝑣𝑙∈𝑀𝑙∈𝑀 − 𝑌𝑗𝑘 ≤ 1  ∀𝑗 ∈ 𝐽. ∀𝑘 ∈ 𝐾. ∀𝑣 ∈ 𝑉          (14) 

∑ 𝑈𝑗
𝑛 ≤ 1 𝑛∈𝑁𝑗

     ∀𝑗 ∈ 𝐽                        (15) 

∑ 𝜇𝑘𝑘∈𝐾 𝑌𝑗𝑘 ≤ ∑ 𝑏𝑗
𝑛𝑈𝑗

𝑛
𝑛∈𝑁𝑗

   ∀𝑗 ∈ 𝐽            (16) 
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∑ 𝑚𝑗
𝑣

𝑣∈𝑉 = 0     ∀𝑗 ∈ 𝐽            (17) 

𝑌𝑗𝑘 , 𝑈𝑗
𝑛, 𝑅𝑘𝑙𝑣 ∈ {0.1}                (18) 

𝐸𝑘
𝑣 . 𝐿𝑘

𝑣 . 𝑚𝑘
𝑣 , 𝑀𝑘𝑣 ≥ 0                (19) 

 Constraint (6) determines the arrival time of vehicles. Constraints (7) and (8) 
calculate the earliness and lateness in serving customer, respectively. Constraint (9) 

assures that the demand of each customer is satisfied by only one vehicle. Constraint 

(10) refers to the limited capacity of vehicles. Constraint (11) eliminates sub-tours. In 
the other words, this constraint ensures that each tour consists of merely one DC and 

some customers. Constraint (12) ensures that vehicles enter to a node must leave this 

node. Constraint (13) ensures that only one DC is included in each tour. Constraint 

(14) indicate that customer 𝑘 is assigned to DC𝑗 if there is a tour that starts from this 

DC and contains node 𝑘. Constraint (15) guarantees that establishing each of DCs is 

possible with a specific capacity level. Constraint (16) refers to the limited capacity of 

DCs. Constraint (17) assures that tours start at the beginning of planning horizon. 
Finally, Constraints (18) and (19) determine binary and positive variables of the 

proposed model, respectively. 

4. The proposed meta-heuristic algorithms 

For solve proposed model, we used NSGA-II, MOSPO and PESA-II. For more details 

see (Deb et al. 2000), (Deb et al., 2002) and (Coello et al., 2004). 

Solution representation and initial solution 

Since a solution to this problem consists of multiple decision variables, we will 

illustrate the representation of each decision variable separately for more clarification. 

Number of open DCs: If we consider𝐽DCs and𝑛 potential capacity levels, a 𝐽 by 

𝑛 + 1matrix is randomly generated that contains real numbers between zero and 

one. Noted that these numbers are generated based on a uniform distribution 

function (this holds in the rest of this paper). The first column determines which 
DC is whether open or not. For this purpose, we set the value of the first column 

equal to one where the generated random values are greater than or equal to 0.5. 

On the other hand, if these values are less than 0.5, we set them equal to zero. If 

the value mapped to the first column and row𝑗 is equal to one, we consider that the 

DC𝑗is open; otherwise, it is close. Afterward, we will find the rows that their first 

column is equal to one (i.e., open DCs). The largest number mapped to each of 

these rows (except their first column) is selected and is set equal to one; then, the 
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other columns of these rows are set equal to zero. Furthermore, the value of other 
rows, where the DC is close, is set equal to zero. Fig. (1) shows an illustrative 

example (an example with three potential DCs and three potential capacity levels) 

for this section of the solution representation. 

0.6557 0.27690.65540.6787

0.0357 0.04610.17110.7577

DC 1

DC 2

1 001

0 000

Number of capacity levels

0.6365 0.54330.74360.4356DC 3 1 010

 

Figure 1.An illustrative example for number of opened DCs 

Assignment of customers to DCs: If we consider 𝐽DCs and𝐵 customers, a 𝐽 by 𝐵 

matrix is randomly generated that contains real numbers between zero and one. If 

DC𝑗 is not open based on the previous step, we will set all the elements of row 𝑗 

equal to zero. Then, we have to recognize the largest value for each of columns 

(i.e., each of customers), and set it equal to one. Finally, we will set the rest of 

values in each of columns equal to zero. Fig. (2) shows an illustrative example (an 
example with two potential DCs and four customers) for this section of the 

solution representation. 

1 010

0 000

Customers

0 101

0.7093 0.11890.65500.2760

0.7546 0.49830.16260.6797

DC 1

DC 2

0.5267 0.87860.32600.4567DC 3

 

Figure 2.An illustrative example for assignment of customers to DCs 

Assignment of vehicles to DCs: If we consider 𝐽DCs and𝑉 vehicles, a 𝐽 by 𝑉 

matrix is randomly generated that contains real numbers between zero and one. If 

DC𝑗 is not open, we will set all the values of row 𝑗 equal to zero. To assign 
vehicles to DCs, we have implemented a two-step procedure as follows. Firstly, 

one vehicle is assigned to each DC. To do so, the largest value for each of rows 

(i.e., each of DCs) are recognized and set equal to one. Then, the rest of values in 

the column of selected value are set equal to zero to ensure that no vehicles have 
been assigned to more than one DCs, simultaneously. Secondly, the rest of 

vehicles, which are not allocated to DCs, will be assigned. For this purpose, the 
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largest number in each of these columns are recognized and allocated to the 

corresponding DC. Fig. (3) shows an illustrative example (an example with two 

potential DCs and four customers) for this section of the solution representation. 

0.8147 0.1269

0.9057 0.9133

DC 1

DC 2

Vehicles

0.6433 0.3255
DC 3

0.5676

0.7653

0.8564

1 0.1269

0 0
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Figure 3.An illustrative example for assignment of vehicles to DCs 

Assignment of vehicles to customers: If we consider 𝐵 customers and𝑉 vehicles, a 

𝐵 by 𝑉 matrix is randomly generated that contains real numbers between zero and 

one. If 𝑎𝑘𝑣 refers to the element of row 𝑘 and column 𝑣, we assign each of 

customers to each of vehicles. First, if customer 𝑘 is not assigned to DC𝑗, and 

furthermore, vehicle 𝑣 is not assigned to DC𝑗, we will set 𝑎𝑘𝑣 equal to zero. Then, 

we will find the largest value in each row and set it equal to one; we will set the 

rest elements of all rows equal to zero. Fig. (4) shows an illustrative example (an 
example with four customers and two vehicles) for this section of the solution 

representation. 
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Figure 4. An illustrative example for assignment of vehicles to customers 

The sequence of customers assigned to routes: If we consider 𝐵 customers, a one 

by 𝐵 matrix is randomly generated that contains real numbers between zero and 

one. Then, all elements are sorted in ascending order to determine the sequence of 
serving customers. Fig. (5) shows an illustrative example (an example with four 

customers) for this section of the solution representation. 
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Figure 5.An illustrative example for sequence of customers assigned to routes 

Crossover and Mutation 

Crossover and mutation are two operators that mostly used in meta-heuristic 

algorithms to produce high-quality solutions, and increase the solutions’ diversity, 

respectively. We refer interested readers toSoni and Kumar (2014) for further detail to 

seek for brevity. 

 Penalty Function 

The structures introduced in previous sub-sections cannot guarantee the 

feasibility of solution regarding the Constraints (10) and (16). For this purpose, the 

average value of these violations is calculated based on Eqs. (21) and (23) an added to 

the first objective function to form Eq. (24): 

𝑉𝐷𝐶𝑗 = 𝑚𝑎𝑥(
𝐷𝐶𝑗

𝑇𝐷𝐶
− 1,0)       (20) 

𝑀𝑒𝑎𝑛_𝑉𝐷𝐶 = 𝑚𝑒𝑎𝑛(𝑉𝐷𝐶𝑗 )       (21) 

𝑉𝑉𝑣 = max (
𝑉𝑣

𝑇𝑉
− 1,0)        (22) 

𝑀𝑒𝑎𝑛_𝑉𝑉 = 𝑚𝑒𝑎𝑛(𝑉𝑉𝑣)       (23) 

𝑓1
′ = 𝑓1 ∗ (1 + 𝑏𝑒𝑡𝑎 ∗ (𝑀𝑒𝑎𝑛_𝑉𝐷𝐶 + 𝑀𝑒𝑎𝑛_𝑉𝑉))    (24) 

where 𝑉𝐷𝐶𝑗  and 𝑉𝑉𝑣  refer to the capacity violation occurred for DC𝑗 and vehicle 𝑣, 

respectively. Furthermore, 𝐷𝐶𝑗  and 𝑉𝑣 refer to the capacity of DC𝑗 and vehicle 𝑣, 

respectively; 𝑇𝐷𝐶 and 𝑇𝑉 refer to the total capacity of DCs and vehicles, respectively. 
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It should be noted that 𝑏𝑒𝑡𝑎 in Eq. (24) refers to the magnifier of violations value and 

is set equal to 1000. 

5. Computational results 

To generate instances randomly, we have defined an interval for each of parameters 
used in the proposed model. For this purpose, the range of parameters is provided in 

Table (1). 

Table 1. Range of parameters used in the proposed model 

Parameter Range Parameter Range 

𝜇𝑘 Uniform [400, 1500] 𝑎𝑗 Uniform [5, 10] 

𝜎𝑘
2 Uniform [10, 30] 𝜃 0.7 

𝑑𝑘𝑙 Uniform [0, 300] 𝛽 0.3 

ℎ𝑗 Uniform [5, 10] 𝑠𝑘
𝑣 Uniform [1, 48] 

𝑝𝑗 Uniform [10, 15] 𝑡𝑘𝑙
𝑣  Uniform [0.5, 5] 

𝑙𝑡𝑗  Uniform [6/365, 10/365] 𝑒𝑘 Uniform [8, 20] 

𝑔𝑗  Uniform [10, 15] 𝑙𝑘 𝑒𝑘 + Uniform [1, 6] 

It is assumed that a year consists of 300 days and each of vehicles will visit customers 

every three days. Thus, 𝑞 is equal to 100. Since the satisfaction rate of customers’ 

demand is set equal to 97.5%, therefore, 𝑍𝛼 is equal to 1.96.The capacity of vehicles is 

determined based on Eq. (25) in which |𝑉| and 𝐷 refer to the total number of 

vehicles and average demand of customers, respectively. 

𝑣𝑐𝑣 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[2 × [
𝐷

|𝑉|
] , 3 × [

𝐷

|𝑉|
]      (25) 

 The largest instance that the exact method could solve in rational CPU Time 

was an instance with six customers and two DCs. The Pareto solutions found using 𝜀- 
constraint method is provided in Table (2) for the largest instance solved by the exact 

method. For more clarification, Fig. (6) illustrates the last Pareto solution provided in 

Table (2). 

Table 2. The Pareto solutions obtained with the exact method using 𝜺-constraint 

 

2232.165 2232.165 2242.61 2264.092 2287.773 2307.075 2322.584 2863.444 2901.013 2916.619 2916.619 2964.688 2985.259 3029.494

495 441 306 292 287 280 248 164 142 124 114 112 111 107
Total

124 104 102 101 97

10

495 441 306 292 287 280 248 164 142

0 0 0 10 10 100 0 0 0 0 0Earliness (h)

Lateness (h)

0
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Figure 6. A schema for the largest instances solved with the exact method 

Therefore, it is obvious that proposing meta-heuristic algorithm was essential.  

5.1.Parameters of the proposed algorithms 

 In order to compare the quality of non-dominated solutions, four criteria such 
as Quality Metric (QM), Mean Ideal Distance (MID), Diversification Metric (DM) and 

Spacing Metric (SM) are used. For more details, see Moradi et al. (2011) and 

Nekooghadirli et al. (2014). 

Taguchi experimental design method has been applied in order to determine the 
optimal level of parameters in NSGA-II, MOPSO and PESA-II algorithms. For this 

purpose, the Parameters of these algorithms are designed in three High, Medium and 

Low level. Then, the optimal setting for the parameters of these algorithms is 



 
 
 
 
 
 
Mohammad Momenikiyai, Sadoullah Ebrahimnejad, Behnam Vahdani 
____________________________________________________________________ 

270 

 
 

determined and used in solving large scale instances in order to increase the quality of 

solutions.  

5.2.Comparison of the proposed algorithms 
To compare the proposed algorithms, 30 instances are randomly generated based on 

the data provided in Table (1). Then, all of the instances are solved using three 
proposed algorithms. 

Considering 12𝑡 − 𝑝𝑎𝑖𝑟𝑒𝑑 tests (four performance metrics and three 

algorithms) the proposed NSGA-II provides better solutions with respect to MID and 

DM. Furthermore, the proposed NSGA-II and the proposed PESA-II outperform the 
proposed MOPSO in terms QM. But the proposed NSGA-II can not only provide 

better solution compared to two other algorithms regarding SM. Therefore, it can be 

argued that the proposed NSGA-II outperforms two other algorithms.  

5.3. Comparison of the proposed NSGA-II and exact method 

Since the proposed NSGA-II outperforms other meta-heuristic algorithms, we 
compared the computational results of based on NSGA-II algorithm and the exact 

method in an instance with six customers, two distributions centers, and two vehicles 

in Table (3).  

Table 3. Comparison the Pareto solutions provided by the proposed NSGA-II and 

𝜺-constraint method 

The proposed NSGA-II 𝜀-constraint method Gap (%) 

Cost 

– 

Obj1  

Earliness and lateness – 

Obj2 (hour) 

Cost – 

Obj1  

Earliness and lateness – 

Obj2 (hour) 

Total Earliness Lateness Total Earliness Lateness Obj1 Obj2 

2347 495 0 495 2232.165 495 0 495 5.14 0.00 

2364 441 0 441 2232.165 441 0 441 5.91 0.00 

2374 306 0 306 2242.61 306 0 306 5.86 0.00 

2393 292 0 292 2264.092 292 0 292 5.69 0.00 

2419 287 0 287 2287.773 287 0 287 5.74 0.00 

2436 280 0 280 2307.075 280 0 280 5.59 0.00 

2454 248 0 248 2322.584 248 0 248 5.66 0.00 

3033 164 0 164 2863.444 164 0 164 5.92 0.00 

3066 142 0 142 2901.013 142 0 142 5.69 0.00 

3066 124 0 124 2916.619 124 0 124 5.12 0.00 

3083 114 10 104 2916.619 114 10 104 5.70 0.00 
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3131 112 10 102 2964.688 112 10 102 5.61 0.00 

3152 111 10 101 2985.259 111 10 101 5.59 0.00 

3173 107 10 97 3029.494 107 10 97 4.74 0.00 

 As Table (3) shows, the results provided by the proposed NSGA-II is 
comparable with the ones provided by the exact method. To be more precise, the exact 

method outperforms the proposed NSGA-II with around 6% gap in only one the 

objective functions. It means that the solutions provided by the proposed NSGA-II are 

reliable.  

5.4. Sensitivity analysis 
In this subsection, a sensitivity analysis has been conducted to figure out how 
increment in the number of vehicles and potential DCs affect the solutions. For this 

purpose, we have studied Instance 23for both cases. In the first case, we have 

increased the number of DCs from 18 to 28, while other parameters are fixed. 

Likewise, we have also increased the number of vehicles from 18 to 29 in the second 
case, while other parameters are fixed. To compare Pareto fronts obtained for each of 

these cases, one mediocre solution has been selected from each of these Pareto fronts. 

Then, they have been compared regarding first and second objective functions. Figs. 
(7) and (8) show the results of this sensitivity analysis when the number of DCs and 

vehicles have been increased, respectively. As shown in Fig. (7), increment in the 

number of DCs increases total costs. Furthermore, it decreases the distance between 
DCs and customers, and consequently, decreases total lateness and earliness. Fig. (8) 

shows also increment in the number of vehicles increases total costs, while decrease 

total earliness and lateness. In other words, increasing availability of vehicles 

decreases total lateness and earliness. 

 

 

 

 

 

 

 

Figure 7. Sensitivity analysis for the number of DCs 
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Figure 8. Sensitivity analysis for the number of vehicles 

6. Conclusion 

In this paper, a bi-objective mathematical model was proposed study LRI problem 
considering risk pooling and soft time window. The first objective function of the 

proposed model aims to minimize costs of establishing DCs, transportation, ordering, 

and inventory holding, and the second one minimizes the earliness and lateness of 

vehicles. Considering the large-scale instances of this problem is NP-Hard, three meta-
heuristic algorithms, such as NSGA-II, MOPSO, and PESA-II were proposed in this 

paper. To compare these algorithms, four well-known criteria were used. But before 

comparing the algorithms, some of theimportant parameters for each of these 
algorithms were determined. Then, three levels were determined, and the optimal 

combination of these parameters was determined by Taguchi experimental design 

method.  

For future research, taking into account environmental objectives besides 

considering multi-product and multi-period mathematical model would be interesting. 

 

REFERENCES 

[1]Ahmadi-Javid, A. & Seddighi, A. H. (2012), A Location-Routing-Inventory 

Model for Designing Multisource Distribution Networks. Engineering Optimization, 

44(6), 637-656; 

[2]Ahmadi-Javid, A. & Azad, N. (2010), Incorporating Location, Routing and 

Inventory Decisions in Supply Chain Network Design. Transportation Research Part 

E: Logistics and Transportation Review, 46(5), 582-597;  



 
 
 
 
 
 
A Bi-Objective Mathematical Model for Inventory-Distribution-Routing Problem 
Under Risk Pooling Effect: Robust Meta-Heuristics Approach 

_____________________________________________________________________ 

 

273 
 

[3]Chen, M.-S. & Lin, C.-T. (1989),Effects of Centralization on Expected Costs in a 

Multi-Location Newsboy Problem. Journal of the Operational Research Society, 

40(6), 597-602; 

[4]Coello, C. A. C., Pulido, G. T. & Lechuga, M. S. (2004), Handling Multiple 

Objectives with Particle Swarm Optimization. IEEE transactions on Evolutionary 
Computation, 8(3), 256-279; 

[5]Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000), A Fast Elitist Non-

Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. 
Paper presented at the International Conference on Parallel Problem Solving From 

Nature; 

[6]Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002), A Fast and Elitist 

Multiobjective Genetic Algorithm: NSGA-II. IEEE transactions on Evolutionary 

Computation, 6(2), 182-197; 

[7]Dehghani, E. & Jabalameli, M. S. (2017), Optimizing Location, Routing and 

Inventory Decisions in an Integrated Supply Chain Network Under Uncertainty. 
Journal of Industrial and Systems Engineering, 9(4), 93-111; 

[8]Eppen, G. D. (1979), Note—Effects of Centralization on Expected Costs in a 

Multi-Location Newsboy Problem. Management Science, 25(5), 498-501; 
[9]Gaur, S. & Ravindran, A. R. (2006), A Bi-Criteria Model for the Inventory 

Aggregation Problem under Risk Pooling. Computers & Industrial Engineering, 

51(3), 482-501; 

[10]Kang, J.-H. & Kim, Y.-D. (2012), Inventory Control in a Two-Level Supply 

Chain With Risk Pooling Effect. International Journal of Production Economics, 

135(1), 116-124; 

[11]Kumar, S. K. & Tiwari, M. (2013), Supply Chain System Design Integrated 

with Risk Pooling. Computers & Industrial Engineering, 64(2), 580-588; 

[12]Low, C., Li, R.-K. & Chang, C.-M. (2013), Integrated Scheduling of 

Production and Delivery with Time Windows. International Journal of Production 
Research, 51(3), 897-909; 

[13]Moradi, H., Zandieh, M. & Mahdavi, I. (2011), Non-dominated Ranked 

Genetic Algorithm for a Multi-Objective Mixed-Model Assembly Line Sequencing 

Problem. International Journal of Production Research, 49(12), 3479-3499; 
[14]Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., & 

Javanmard, S. (2014), Solving a New Bi-Objective Location-Routing-Inventory 

Problem in a Distribution Network By Meta-Heuristics. Computers & Industrial 
Engineering, 76, 204-221; 



 
 
 
 
 
 
Mohammad Momenikiyai, Sadoullah Ebrahimnejad, Behnam Vahdani 
____________________________________________________________________ 

274 

 
 

[15]Park, S., Lee, T.-E. & Sung, C. S. (2010), A Three-level Supply Chain Network 

Design Model with Risk-Pooling and Lead Times. Transportation Research Part E: 

Logistics and Transportation Review, 46(5), 563-581. 
[16]Schmitt, A. J., Sun, S. A., Snyder, L. V. & Shen, Z.-J. M. (2015),Centralization 

versus Decentralization: Risk Pooling, Risk Diversification, and Supply Chain 

Disruptions. Omega, 52, 201-212; 
[17]Soni, N. & Kumar, T. (2014), Study of Various Mutation Operators in Genetic 

Algorithms. International Journal of Computer Science and Information Technologies, 

5(3), 4519-4521; 
[18]Tavakkoli-Moghaddam, R., Azarkish, M. & Sadeghnejad-Barkousaraie, A. 

(2011) , A New Hybrid Multi-Objective Pareto Archive PSO Algorithm for a Bi-

Objective Job Shop Scheduling Problem. Expert Systems with Applications, 38(9), 

10812-10821; 
[19]Tavakkoli-Moghaddam, R., Forouzanfar, F. & Ebrahimnejad, S. (2013), 

Incorporating Location, Routing, and Inventory Decisions in a Bi-Objective Supply 

Chain Design Problem with Risk-Pooling. Journal of Industrial Engineering 
International, 9(1), 19; 

[20]Vahdani, B., Niaki, S. &Aslanzade, S. (2017), Production-Inventory-Routing 

Coordination with Capacity and Time Window Constraints for Perishable Products: 
Heuristic and Meta-heuristic Algorithms. Journal of Cleaner Production; 

[21]Yan, S., Chu, J. C., Hsiao, F.-Y. & Huang, H.-J. (2015), A Planning Model and 

Solution Algorithm for Multi-Trip Split-Delivery Vehicle Routing and Scheduling 

Problems with Time Windows. Computers & Industrial Engineering, 87, 383-393; 
[22]Zhang, Y., Snyder, L. V., Qi, M. & Miao, L. (2016), A Heterogeneous Reliable 

Location Model with Risk Pooling under Supply Disruptions. Transportation 

Research Part B: Methodological, 83, 151-178; 
[23]Zhong, Y. & Cole, M. H. (2005), A Vehicle Routing Problem with Backhauls 

and Time Windows: A Guided Local Search Solution. Transportation Research Part 

E: Logistics and Transportation Review,41(2), 131-144. 
 


